

LINEAR CIRCUIT ANALYSIS (EED) — U.E.T. TAXILA | O9 ENGR. M. MANSOOR ASHRAF

INTRODUCTION

Thus far our analysis has been restricted for the most part to dc circuits: those circuits excited by constant or time-invariant sources.

We now begin the analysis of circuits in which the source voltage or current is time-varying.

A sinusoid is a signal that has the form of the sine or cosine function.

A sinusoidal current is usually referred to as alternating current (ac).

SINUSOIDS

Consider the sinusoidal voltage; $v(t) = V_m \sin \omega t$ Where V_m = the *amplitude* of the sinusoid ω = the *angular frequency* in radians/s ωt = the *argument* of the sinusoid v(t) V_m V_m V_m

It is evident that sinusoid repeats itself every T seconds; where T is called period of sinusoid.

A Periodic Function is one that satisfies f(t)=f(t+nT), for all t and for all integers n.

For sinusoid; v(t + T) = v(t)

Period of periodic function is time for complete cycle.

SINUSOIDS

The reciprocal of time period is number of cycles per second, known as the Cyclic Frequency, measured in hertz (Hz). $f = \frac{1}{T} \qquad \omega = 2\pi f$

Consider general sinusoid;

$$v(t) = V_m \sin(\omega t + \phi)$$

Lets examine two sinusoid;

 $v_1(t) = V_m \sin \omega t$ $v_2(t) = V_m \sin(\omega t + \phi)$

SINUSOIDS

The sinusoid can be expressed in either sine or cosine form.

Following trigonometric identities may be used;

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$
$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

To interchange sine and cosine functions;

 $\sin(\omega t \pm 180^{\circ}) = -\sin\omega t$ $\cos(\omega t \pm 180^{\circ}) = -\cos\omega t$ $\sin(\omega t \pm 90^{\circ}) = \pm\cos\omega t$ $\cos(\omega t \pm 90^{\circ}) = \mp\sin\omega t$

PROBLEMS

Find amplitude, phase, period and frequency of sinusoid: $v(t) = 12 \cos(50t + 10^{\circ})$ $(12 \text{ V}, 10^{\circ}, 50 \text{ rad/s}, 0.1257 \text{ s}, 7.958 \text{ Hz})$

Calculate the phase angle between two sinusoids and state which sinusoid is leading?

$$v_1 = -10 \cos(\omega t + 50^\circ)$$

 $v_2 = 12 \sin(\omega t - 10^\circ)$ (30°, v₂)

A Phasor is a complex number that represents the amplitude and phase of a sinusoid.

A complex number can be represented in three forms

as;	z = x + jy	Rectangular form
	$z = r/\phi$	Polar form
	$z = re^{j\phi}$	Exponential form

The relationship between the rectangular form and the polar form is;

$$r = \sqrt{x^2 + y^2}, \qquad \phi = \tan^{-1}\frac{y}{x}$$
$$x = r\cos\phi, \qquad y = r\sin\phi$$

PHASORS

Addition and subtraction of complex numbers are better performed in rectangular form while multiplication and division in polar form.

z = x + jy =	$r/\phi, \qquad z_1 = x_1 + jy_1 = r_1/\phi_1$
Z	$x_2 = x_2 + jy_2 = r_2/\phi_2$
Addition;	$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$
Subtraction;	$z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2)$
Multiplication;	$z_1 z_2 = r_1 r_2 / \phi_1 + \phi_2$
Division;	$\frac{z_1}{z_2} = \frac{r_1}{r_2} / \phi_1 - \phi_2$

PHASORS

Reciprocal;

$$\frac{1}{z} = \frac{1}{r} \angle -\phi$$

Square Root;

$$\sqrt{z} = \sqrt{r} / \phi/2$$

Complex Conjugate;

$$z^* = x - jy = r / -\phi = r e^{-j\phi}$$

In complex numbers;

$$\frac{1}{j} = -j$$

The idea of phasor representation is based on Euler's identity. $e^{\pm j\phi} = \cos\phi \pm j\sin\phi$ where; $\cos\phi = \operatorname{Re}(e^{j\phi})$ $\sin\phi = \operatorname{Im}(e^{j\phi})$ Given a sinusoid; $v(t) = V_m \cos(\omega t + \phi)$ $v(t) = V_m \cos(\omega t + \phi) = \operatorname{Re}(V_m e^{j(\omega t + \phi)})$ $v(t) = \operatorname{Re}(V_m e^{j\phi} e^{j\omega t})$ $v(t) = \operatorname{Re}(\operatorname{Ve}^{j\omega t})$ where; $V = V_m e^{j\phi} = V_m / \phi$

PHASORS

'V' is the phasor representation of the sinusoid v(t).

The phasor rotates in complex plane to plot sine wave in time domain using its projection.

The transformation is summarized as:

representation)

 $v(t) = V_m \cos(\omega t + \phi) \quad \Leftrightarrow \quad \mathbf{V} = V_m / \phi$ (Time-domain

(Phasor-domain

representation)

Time domain and phasor domain representation can be interchanaed as: Time domain representation Phasor domain representation

$V_m \cos(\omega t + \phi)$	V_m / ϕ
$V_m \sin(\omega t + \phi)$	$V_m / \phi - 90^\circ$
$I_m \cos(\omega t + \theta)$	I_m / θ
$I_m \sin(\omega t + \theta)$	$I_m / \theta - 90^\circ$

PHASORS

Time domain is also known as Instantaneous domain and phasor domain is also known as Frequency domain.

Consider sinusoid;

 $v(t) = \operatorname{Re}(\operatorname{V}e^{j\omega t}) = V_m \cos(\omega t + \phi)$ Differentiatina; $\frac{dv}{dt} = -\omega V_m \sin(\omega t + \phi) = \omega V_m \cos(\omega t + \phi + 90^\circ)$ $= \operatorname{Re}(\omega V_m e^{j\omega t} e^{j\phi} e^{j90^\circ}) = \operatorname{Re}(j\omega \mathbf{V} e^{j\omega t})$

Transformation of derivative from time domain to phasor domain is;

$$\Leftrightarrow$$

dt (Time domain)

dv

(Phasor domain)

Transformation of integral from time domain to phasor domain is;

 $\int v \, dt \qquad \Leftrightarrow \qquad \overline{j\omega}$ (Time domain) (Phasor domain)

The v(t) is time dependent, while V is not.

The v(t) is always real with no complex term, while V is generally complex.

PROBLEMS

Evaluate these complex numbers:

(a)
$$(40/50^{\circ} + 20/-30^{\circ})^{1/2}$$

(b) $\frac{10/-30^{\circ} + (3 - j4)}{(2 + j4)(3 - j5)^{*}}$

Transform these sinusoids to phasors:

(a)
$$i = 6 \cos(50t - 40^\circ) \text{ A}$$

(b) $v = -4 \sin(30t + 50^\circ) \text{ V}$

Find the sinusoids represented by these phasors:

(a)
$$I = -3 + j4 A$$

(b) $V = j8e^{-j20^{\circ}} V$

PROBLEMS

Given $i_1(t) = 4 \cos(\omega t + 30^\circ)$ A and $i_2(t) = 5 \sin(\omega t - 20^\circ)$ A, find their sum.

$$i(t) = 3.218 \cos(\omega t - 56.97^{\circ}) \text{ A}$$

Using the phasor approach, determine the current i(t) in a circuit described by the integrodifferential equation

$$4i + 8 \int i \, dt - 3 \frac{di}{dt} = 50 \cos(2t + 75^\circ)$$
$$i(t) = 4.642 \cos(2t + 143.2^\circ) \,\mathrm{A}$$

PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS

If the current through the resistor R is $i=I_m cos(\omega t+\phi)$, voltage across resistor is given by Ohm's law.

 $v = iR = RI_m \cos(\omega t + \phi)$

Phasor form;

$$\mathbf{V} = RI_m / \phi$$
$$\mathbf{V} = R\mathbf{I}$$

PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS

If the current through the inductor L is $i=I_m cos(\omega t+\phi)$, voltage across inductor is given by;

 $v = L\frac{di}{dt} = -\omega LI_m \sin(\omega t + \phi) \quad v = \omega LI_m \cos(\omega t + \phi + 90^\circ)$ $V = \omega LI_m e^{j(\phi + 90^\circ)} = \omega LI_m e^{j\phi} e^{j90^\circ} = \omega LI_m / \phi + 90^\circ$

PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS

If the voltage across capacitor C is $v=V_m cos(\omega t+\phi)$, current through capacitor is given by;

PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS

Summary

Element	Time domain	Frequency domain
R	v = Ri	$\mathbf{V} = R\mathbf{I}$
L	$v = L \frac{di}{dt}$	$\mathbf{V} = j\omega L \mathbf{I}$
С	$i = C \frac{dv}{dt}$	$\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$

PROBLEMS

The voltage $v = 12 \cos(60t + 45^\circ)$ is applied to a 0.1-H inductor. Find the steady-state current through the inductor.

$$i(t) = 2\cos(60t - 45^\circ)$$
 A

If voltage $v = 10 \cos(100t + 30^\circ)$ is applied to a 50 μ F capacitor, calculate the current through the capacitor.

 $50 \cos(100t + 120^\circ) \text{ mA}$

IMPEDANCE AND ADMITTANCE

The voltage across resistor, inductor and capacitor are;

$$V = RI, \quad V = j\omega LI, \quad V = \frac{1}{j\omega C}$$
$$\frac{V}{I} = R, \quad \frac{V}{I} = j\omega L, \quad \frac{V}{I} = \frac{1}{j\omega C}$$
$$Z = \frac{V}{I} \quad \text{or} \quad V = ZI$$

Where Z is a frequency dependent quantity known as impedance, measured in ohms.

The Impedance of a circuit is the ratio of the phasor voltage to the phasor current, measured in Ohms.

IMPEDANCE AND ADMITTANCE

The Admittance (Y) is the reciprocal of impedance, measured in Siemens.

$$\mathbf{Y} = \frac{1}{\mathbf{Z}} = \frac{\mathbf{I}}{\mathbf{V}}$$

Impedances and admittances of passive elements.

Element	Impedance	Admittance
R	$\mathbf{Z} = R$	$\mathbf{Y} = \frac{1}{R}$
L	$\mathbf{Z} = j\omega L$	$\mathbf{Y} = \frac{1}{j\omega L}$
С	$\mathbf{Z} = \frac{1}{j\omega C}$	$\mathbf{Y} = j\omega C$

IMPEDANCE AND ADMITTANCE

The impedance may be expressed in rectangular form;

 $\mathbb{Z} = R + jX$

 $R = \operatorname{Re} \mathbf{Z}$ is the *resistance* $X = \operatorname{Im} \mathbf{Z}$ is the *reactance*

Reactance may be positive or negative depending on circuit element.

Inductive reactance for inductor;

 $\mathbf{Z} = R + jX$

Capacitive reactance for capacitor;

 $\mathbf{Z} = R - jX$

IMPEDANCE AND ADMITTANCE

The impedance may be expressed in polar form;

$$\mathbb{Z} = |\mathbb{Z}| / \theta$$

$$\mathbf{Z} = R + jX = |\mathbf{Z}|/\theta$$

Relationship between rectangular and polar forms of impedance.

$$|\mathbf{Z}| = \sqrt{R^2 + X^2}, \qquad \theta = \tan^{-1} \frac{X}{R}$$
$$R = |\mathbf{Z}| \cos \theta, \qquad X = |\mathbf{Z}| \sin \theta$$

IMPEDANCE AND ADMITTANCE

Admittance is reciprocal of impedance and is combination of Conductance and Susceptance as real and imaginary parts.

$$\mathbf{Y} = G + jB$$
$$G + jB = \frac{1}{R + jX}$$
$$G = \frac{R}{R^2 + X^2}, \qquad B = -\frac{X}{R^2 + X^2}$$

PROBLEMS

Find v(t) and i(t)?

KIRCHHOFF'S LAWS IN FREQUENCY DOMAIN

KVL holds in phasor domain as in time domain.

$$v_1 + v_2 + \dots + v_n = 0$$
$$V_1 + V_2 + \dots + V_n = 0$$

KCL also holds in phasor domain as in time domain.

$$i_1 + i_2 + \dots + i_n = 0$$
$$\mathbf{I}_1 + \mathbf{I}_2 + \dots + \mathbf{I}_n = 0$$

IMPEDANCE COMBINATIONS

Equivalent impedance in series circuit;

 $\mathbf{Z}_{eq} = \mathbf{Z}_1 + \mathbf{Z}_2 + \dots + \mathbf{Z}_N$

IMPEDANCE COMBINATIONS

Equivalent impedance in parallel circuit;

IMPEDANCE COMBINATIONS

Voltage and current division rules are also equally applicable for series and parallel circuits;

$$\mathbf{V}_1 = \frac{\mathbf{Z}_1}{\mathbf{Z}_1 + \mathbf{Z}_2} \mathbf{V}, \qquad \mathbf{V}_2 = \frac{\mathbf{Z}_2}{\mathbf{Z}_1 + \mathbf{Z}_2} \mathbf{V}$$

$$I_1 = \frac{Z_2}{Z_1 + Z_2} I, \qquad I_2 = \frac{Z_1}{Z_1 + Z_2} I$$

PROBLEMS

Find equivalent impedance at ω =50 rad/s.

REFERENCES

Fundamentals of Electric Circuits (4th Edition) Charles K. Alexander, Matthew N. O. Sadiku

Chapter 09 – Sinusoids and Phasors (9.1 – 9.7) Exercise Problems: 9.1 – 9.70 Do exercise problem yourself.