

LINEAR CIRCUIT ANALYSIS (EED) - U.E.T. TAXILA
 09

ENGR. M. MANSOOR ASHRAF

INTRODUCTION

Thus far our analysis has been restricted for the most part to dc circuits: those circuits excited by constant or time-invariant sources.

We now begin the analysis of circuits in which the source voltage or current is time-varying.

A sinusoid is a signal that has the form of the sine or cosine function.

A sinusoidal current is usually referred to as alternating current (ac).

SINUSOIDS

Consider the sinusoidal voltage; $\quad v(t)=V_{m} \sin \omega t$
Where $\quad V_{m}=$ the amplitude of the sinusoid
$\omega=$ the angular frequency in radians $/ \mathrm{s}$
$\omega t=$ the argument of the sinusoid

It is evident that sinusoid repeats itself every T seconds; where T is called period of sinusoid.

SINUSOIDS

Time period of sinusoid;

$$
T=\frac{2 \pi}{\omega}
$$

A Periodic Function is one that satisfies $f(t)=f(t+n T)$, for all t and for all integers n.
For sinusoid;

$$
v(t+T)=v(t)
$$

Period of periodic function is time for complete cycle.

SINUSOIDS

The reciprocal of time period is number of cycles per second, known as the Cyclic Frequency, measured in hertz (Hz).

$$
f=\frac{1}{T} \quad \omega=2 \pi f
$$

Consider general sinusoid;

$$
v(t)=V_{m} \sin (\omega t+\phi)
$$

Lets examine two sinusoid;

$$
v_{1}(t)=V_{m} \sin \omega t \quad v_{2}(t)=V_{m} \sin (\omega t+\phi)
$$

SINUSOIDS

SINUSOIDS

The sinusoid can be expressed in either sine or cosine form.

Following trigonometric identities may be used;

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B
\end{aligned}
$$

To interchange sine and cosine functions;

$$
\begin{aligned}
\sin \left(\omega t \pm 180^{\circ}\right) & =-\sin \omega t \\
\cos \left(\omega t \pm 180^{\circ}\right) & =-\cos \omega t \\
\sin \left(\omega t \pm 90^{\circ}\right) & = \pm \cos \omega t \\
\cos \left(\omega t \pm 90^{\circ}\right) & =\mp \sin \omega t
\end{aligned}
$$

PROBLEMS

Find amplitude, phase, period and frequency of sinusoid:

$$
v(t)=12 \cos \left(50 t+10^{\circ}\right)
$$

$$
\left(12 \mathrm{~V}, 10^{\circ}, 50 \mathrm{rad} / \mathrm{s}, 0.1257 \mathrm{~s}, 7.958 \mathrm{~Hz}\right)
$$

Calculate the phase angle between two sinusoids and state which sinusoid is leading?

$$
\begin{aligned}
& v_{1}=-10 \cos \left(\omega t+50^{\circ}\right) \\
& v_{2}=12 \sin \left(\omega t-10^{\circ}\right) \quad\left(30^{\circ}, v_{2}\right)
\end{aligned}
$$

PHASORS

A Phasor is a complex number that represents the amplitude and phase of a sinusoid.

A complex number can be represented in three forms as;

$$
\begin{array}{ll}
z=x+j y & \\
\text { Rectangular form } \\
z=r \angle \phi & \\
z=r e^{j \phi} & \\
\text { Polar form } \\
\text { Exponential form }
\end{array}
$$

The relationship between the rectangular form and the polar form is;

$$
\begin{array}{cc}
r=\sqrt{x^{2}+y^{2}}, & \phi=\tan ^{-1} \frac{y}{x} \\
x=r \cos \phi, & y=r \sin \phi
\end{array}
$$

PHASORS

The complex may be written and interpreted as;

$$
z=x+j y=r \angle \phi=r(\cos \phi+j \sin \phi)
$$

Imaginary axis

PHASORS

Addition and subtraction of complex numbers are better performed in rectangular form while multiplication and division in polar form.

$$
\begin{gathered}
z=x+j y=r \angle \phi, \quad z_{1}=x_{1}+j y_{1}=r_{1} \angle \phi_{1} \\
z_{2}=x_{2}+j y_{2}=r_{2}\left\langle\phi_{2}\right.
\end{gathered}
$$

Addition;
Subtraction;

$$
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)
$$

Multiplication;

$$
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)
$$

Division;

$$
z_{1} z_{2}=r_{1} r_{2}\left\langle\phi_{1}+\phi_{2}\right.
$$

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} / \phi_{1}-\phi_{2}
$$

PHASORS

Reciprocal;

$$
\frac{1}{z}=\frac{1}{r} L-\phi
$$

Square Root;

$$
\sqrt{z}=\sqrt{r} \angle \phi / 2
$$

Complex Conjugate;

$$
z^{*}=x-j y=r /-\phi=r e^{-j \phi}
$$

In complex numbers;

$$
\frac{1}{j}=-j
$$

PHASORS

The idea of phasor representation is based on Euler's identity.

$$
e^{ \pm j \phi}=\cos \phi \pm j \sin \phi
$$

where;

$$
\begin{aligned}
\cos \phi & =\operatorname{Re}\left(e^{j \phi}\right) \\
\sin \phi & =\operatorname{Im}\left(e^{j \phi}\right)
\end{aligned}
$$

Given a sinusoid;

$$
\begin{aligned}
& v(t)=V_{m} \cos (\omega t+\phi) \\
& v(t)=V_{m} \cos (\omega t+\phi)=\operatorname{Re}\left(V_{m} e^{j(\omega t+\phi)}\right) \\
& v(t)=\operatorname{Re}\left(V_{m} e^{j \phi} e^{j \omega t}\right) \\
& v(t)=\operatorname{Re}\left(\mathbf{V} e^{j \omega t}\right)
\end{aligned}
$$

where;

$$
\mathbf{V}=V_{m} e^{j \phi}=V_{m} \angle \phi
$$

PHASORS

' \mathbf{V} ' is the phasor representation of the sinusoid $v(t)$.
The phasor rotates in complex plane to plot sine wave in time domain using its projection.

PHASORS

The transformation is summarized as;

$$
\begin{array}{rll}
v(t)= & V_{m} \cos (\omega t+\phi) \quad \Leftrightarrow \quad \mathbf{V}=V_{m} / \phi \\
& \begin{array}{l}
\text { (Time-domain } \\
\text { representation) }
\end{array} & \begin{array}{c}
\text { (Phasor-domain } \\
\text { representation) }
\end{array}
\end{array}
$$

Time domain and phasor domain representation can be interchanged as;
Time domain representation
Phasor domain representation
$V_{m} \cos (\omega t+\phi)$
$V_{m} \angle \phi$
$V_{m} \sin (\omega t+\phi)$
$V_{m} \angle \phi-90^{\circ}$
$I_{m} \cos (\omega t+\theta)$
I_{m} / θ
$I_{m} \sin (\omega t+\theta)$
$I_{m} \angle \theta-90^{\circ}$

PHASORS

Time domain is also known as Instantaneous domain and phasor domain is also known as Frequency domain.

Consider sinusoid;
Differentiating;

$$
v(t)=\operatorname{Re}\left(\mathbf{V} e^{j \omega t}\right)=V_{m} \cos (\omega t+\phi)
$$

$$
\begin{aligned}
\frac{d v}{d t} & =-\omega V_{m} \sin (\omega t+\phi)=\omega V_{m} \cos \left(\omega t+\phi+90^{\circ}\right) \\
& =\operatorname{Re}\left(\omega V_{m} e^{j \omega t} e^{j \phi} e^{j 90^{\circ}}\right)=\operatorname{Re}\left(j \omega \mathbf{V} e^{j \omega t}\right)
\end{aligned}
$$

Transformation of derivative from time domain to phasor domain is;

PHASORS

Transformation of integral from time domain to phasor domain is;

$$
\int_{\text {(Time domain) }} v d t \quad \Leftrightarrow \quad \begin{gathered}
\frac{\mathbf{V}}{j \omega} \\
\text { (Phasor domain) }
\end{gathered}
$$

The $v(t)$ is time dependent, while \mathbf{V} is not.
The $v(t)$ is always real with no complex term, while \mathbf{V} is generally complex.

PROBLEMS

Evaluate these complex numbers:
(a) $\left(40 / 50^{\circ}+20 /-30^{\circ}\right)^{1 / 2}$
(b) $\frac{10 \angle-30^{\circ}+(3-j 4)}{(2+j 4)(3-j 5)^{*}}$

Transform these sinusoids to phasors:
(a) $i=6 \cos \left(50 t-40^{\circ}\right) \mathrm{A}$
(b) $v=-4 \sin \left(30 t+50^{\circ}\right) \mathrm{V}$

Find the sinusoids represented by these phasors:
(a) $\mathbf{I}=-3+j 4 \mathrm{~A}$
(b) $\mathbf{V}=j 8 e^{-j 20^{\circ}} \mathrm{V}$

PROBLEMS

Given $i_{1}(t)=4 \cos \left(\omega t+30^{\circ}\right) \mathrm{A}$ and $i_{2}(t)=5 \sin \left(\omega t-20^{\circ}\right) \mathrm{A}$, find their sum.

$$
i(t)=3.218 \cos \left(\omega t-56.97^{\circ}\right) \mathrm{A}
$$

Using the phasor approach, determine the current $i(t)$ in a circuit described by the integrodifferential equation

$$
\begin{array}{r}
4 i+8 \int i d t-3 \frac{d i}{d t}=50 \cos \left(2 t+75^{\circ}\right) \\
\quad i(t)=4.642 \cos \left(2 t+143.2^{\circ}\right) \mathrm{A}
\end{array}
$$

PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS

If the current through the resistor R is $i=I_{m} \cos (\omega t+\phi)$, voltage across resistor is given by Ohm's law.
$v=i R=R I_{m} \cos (\omega t+\phi)$
Phasor form;

PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS

If the current through the inductor L is $i=I_{m} \cos (\omega t+\phi)$, voltage across inductor is given by;

$$
\begin{gathered}
v=L \frac{d i}{d t}=-\omega L I_{m} \sin (\omega t+\phi) \quad v=\omega L I_{m} \cos \left(\omega t+\phi+90^{\circ}\right) \\
\mathbf{V}=\omega L I_{m} e^{j\left(\phi+90^{\circ}\right)}=\omega L I_{m} e^{j \phi} e^{j 90^{\circ}}=\omega L I_{m} \frac{\left(\phi+90^{\circ}\right.}{e^{j 90^{\circ}}=j} \\
\mathbf{V}=j \omega L \mathbf{I}
\end{gathered}
$$

PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS
 If the voltage across capacitor C is $v=V_{m} \cos (\omega t+\phi)$, current through capacitor is given by;

$$
i=C \frac{d v}{d t} \quad \mathbf{I}=j \omega C \mathbf{V} \quad \Rightarrow \quad \mathbf{V}=\frac{\mathbf{I}}{j \omega C}
$$

PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS

Summary

Element

R

$$
\begin{aligned}
& v=R i \\
& v=L \frac{d i}{d t}
\end{aligned}
$$

$$
\mathbf{V}=R \mathbf{I}
$$

L

$$
\mathbf{V}=j \omega L \mathbf{I}
$$

C
.

$$
i=C \frac{d v}{d t}
$$

$$
\mathbf{V}=\frac{\mathbf{I}}{j \omega C}
$$

PROBLEMS

The voltage $v=12 \cos \left(60 t+45^{\circ}\right)$ is applied to a $0.1-\mathrm{H}$ inductor. Find the steady-state current through the inductor.

$$
i(t)=2 \cos \left(60 t-45^{\circ}\right) \mathrm{A}
$$

If voltage $v=10 \cos \left(100 t+30^{\circ}\right)$ is applied to a $50 \mu \mathrm{~F}$ capacitor, calculate the current through the capacitor.

$$
50 \cos \left(100 t+120^{\circ}\right) \mathrm{mA}
$$

IMPEDANCE AND ADMITTANCE

The voltage across resistor, inductor and capacitor are;

$$
\begin{aligned}
& \mathbf{V}=R \mathbf{I}, \quad \mathbf{V}=j \omega L \mathbf{I}, \\
& \frac{\mathbf{V}}{\mathbf{I}}=R, \quad \frac{\mathbf{V}}{\mathbf{I}}=j \omega L, \quad \frac{\mathbf{I}}{j \omega C} \\
& \mathbf{Z}=\frac{\mathbf{V}}{\mathbf{I}} \quad \text { or } \quad \frac{1}{j \omega C} \\
& \mathbf{I}=\mathbf{Z I}
\end{aligned}
$$

Where Z is a frequency dependent quantity known as impedance, measured in ohms.

The Impedance of a circuit is the ratio of the phasor voltage to the phasor current, measured in Ohms.

IMPEDANCE AND ADMITTANCE

The Admittance (Y) is the reciprocal of impedance, measured in Siemens.

$$
\begin{aligned}
& \mathbf{Y}=\frac{1}{\mathbf{Z}}=\frac{\mathbf{I}}{\mathbf{V}} \quad \begin{array}{l}
\text { Impedances and adm } \\
\text { of passive elements. }
\end{array} \\
& \text { Element Impedance Admittance } \\
& R \quad \mathbf{Z}=R \quad \mathbf{Y}=\frac{1}{R} \\
& L \quad \mathbf{Z}=j \omega L \quad \mathbf{Y}=\frac{1}{j \omega L} \\
& C \quad \mathbf{Z}=\frac{1}{j \omega C} \quad \mathbf{Y}=j \omega C
\end{aligned}
$$

IMPEDANCE AND ADMITTANCE

The impedance may be expressed in rectangular form;

$$
\mathbf{Z}=R+j X
$$

$R=\operatorname{Re} \mathbf{Z}$ is the resistance $\quad X=\operatorname{Im} \mathbf{Z}$ is the reactance
Reactance may be positive or negative depending on circuit element.

Inductive reactance for inductor;

$$
\mathbf{Z}=R+j X
$$

Capacitive reactance for capacitor;

$$
\mathbf{Z}=R-j X
$$

IMPEDANCE AND ADMITTANCE

The impedance may be expressed in polar form;

$$
\begin{gathered}
\mathbf{Z}=|\mathbf{Z}| \angle \theta \\
\mathbf{Z}=R+j X=|\mathbf{Z}| \angle \theta
\end{gathered}
$$

Relationship between rectangular and polar forms of impedance.

$$
\begin{aligned}
|\mathbf{Z}| & =\sqrt{R^{2}+X^{2}}, \quad \theta=\tan ^{-1} \frac{X}{R} \\
R & =|\mathbf{Z}| \cos \theta, \quad X=|\mathbf{Z}| \sin \theta
\end{aligned}
$$

IMPEDANCE AND ADMITTANCE

Admittance is reciprocal of impedance and is combination of Conductance and Susceptance as real and imaginary parts.

$$
\begin{gathered}
\mathbf{Y}=G+j B \\
G+j B=\frac{1}{R+j X} \\
G=\frac{R}{R^{2}+X^{2}}, \quad B=-\frac{X}{R^{2}+X^{2}}
\end{gathered}
$$

PROBLEMS

Find $\mathrm{v}(\mathrm{t})$ and $\mathrm{i}(\mathrm{t})$?

KIRCHHOFF'S LAWS IN FREQUENCY DOMAIN

KVL holds in phasor domain as in time domain.

$$
\begin{gathered}
v_{1}+v_{2}+\cdots+v_{n}=0 \\
\mathbf{V}_{1}+\mathbf{V}_{2}+\cdots+\mathbf{V}_{n}=0
\end{gathered}
$$

KCL also holds in phasor domain as in time domain.

$$
\begin{gathered}
i_{1}+i_{2}+\cdots+i_{n}=0 \\
\mathbf{I}_{1}+\mathbf{I}_{2}+\cdots+\mathbf{I}_{n}=0
\end{gathered}
$$

IMPEDANCE COMBINATIONS

Equivalent impedance in series circuit;

$$
\mathbf{Z}_{\mathrm{eq}}=\mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{N}
$$

IMPEDANCE COMBINATIONS

Equivalent impedance in parallel circuit;

$$
\frac{1}{\mathbf{Z}_{\mathrm{eq}}}=\frac{\mathbf{I}}{\mathbf{V}}=\frac{1}{\mathbf{Z}_{1}}+\frac{1}{\mathbf{Z}_{2}}+\cdots+\frac{1}{\mathbf{Z}_{N}}
$$

IMPEDANCE COMBINATIONS
Voltage and current division rules are also equally applicable for series and parallel circuits;

$$
\begin{aligned}
\mathbf{V}_{1}=\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{V}, & \mathbf{V}_{2}=\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{V} \\
\mathbf{I}_{1}=\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{I}, & \mathbf{I}_{2}=\frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \mathbf{I}
\end{aligned}
$$

PROBLEMS

Find equivalent impedance at $\omega=50 \mathrm{rad} / \mathrm{s}$.

REFERENCES

Fundamentals of Electric Circuits ($4^{\text {th }}$ Edition)
 Charles K. Alexander, Matthew N. O. Sadiku

Chapter 09 - Sinusoids and Phasors (9.1-9.7)
Exercise Problems: 9.1-9.70
Do exercise problem yourself.

